A.G\& S.G.SIDDHARTHA DEGREE COLLEGE OF ARTS \& SCIENCE

VUYYURU-521165, KRISHNA Dt., A.P.(Autonomous)

Accredited by NAAC with "A" Grade
2019-2020

DEPARTMENT OF MATHEMATICS MINUTES OF BOARD OF STUDIES ODD SEMESTER

15-04-2019

Minutes of the meeting of BOS in Mathematics for B.Sc Degree Courses of AG \& SG Siddhartha Degree College of Arts \& Science, Vuyyuru, held at 10.30 A.M on 15-04-2019.
$\mathcal{N} . T$. Srinivasa Rao
Members Present:

1) ...N:V.: Sunf
(N.V. Srinivasa Rao)
2)

(Dr. K. Naveen Kumar)
3)

4)

(Dr J.Vijayasekhar)
5) $\therefore 2 \ldots \ldots . .$.
(Dr P.Srinivasa Rao)
6) ... Pi.funitha (D. Sunitha)
7) ..A. Thergani..
(A. Bhargavi)
8)

9)

(K. Rajya Lakshmi)
10)A.
(A. Sahithi)
11)
. 3: Rofor
(S. Raja)

Chairman
University
Nominee
Subject
Expert
Subject
Expert

> Subject

Expert
Alumni member
Member
Member

Member

Member

Student Member

Student
Member

Head, Department of Mathematics, AG \& SG S Degree College.

Department of Mathematics,
K.B.N Degree College,

Vijayawada.
Prof and HOD of Mathematics, Sir C.R.R College, Eluru.

Asst. Professor,
Department of Mathematics, School of Technology, GITAM
University, Hyderabad.
Director and Principal,
Sri Srinivasa Educational Institutions, Vuyyuru.

Lecturer in Mathematics
AG \& SG S Degree College.
Lecturer in Mathematics
AG \& SG S Degree College.
Lecturer in Mathematics
AG \& SG S Degree College.
Lecturer in Mathematics
AG \& SG S Degree College.
III B.Sc M.P.Cs
AG \& SG S Degree College.
III B.Sc M.P.C (T)
AG \& SG S Degree College.

Agenda of B.O.S Meeting:

1. To discuss and recommend the Syllabi, Model Question Papers and Guidelines to be followed by question paper setters in Mathematics for $1^{\text {st }}$ Semester as per the guidelines and instructions under CBCS prescribed by Krishna University from the Academic Year 2019-20.
2. To discuss and recommend the Syllabi, Model Question Papers and Guidelines to be followed by question paper setters in Mathematics for $3^{\text {rd }}$ Semester as per the guidelines and instructions under CBCS prescribed by Krishna University from the Academic Year 2019-20.
3. To discuss and recommend the Syllabi, Model Question Papers and Guidelines to be followed by question paper setters in Mathematics for $5^{\text {th }}$ Semester as per the guidelines and instructions under CBCS prescribed by Krishna University from the Academic Year 2019-20.
4. Any other matter.

Resolutions.

1. Discussed and recommended that no changes are required in syllabi, Model Question Papers and Guidelines for question paper setters in Mathematics for the $1^{\text {st }}$ Semester for the Academic year 2019-20.
2. Discussed and recommended that changes are required in Syllabic. Model Question Papers and Guidelines to be followed by the question paper setters in Mathematics for $3^{\text {rd }}$ Semesters from the Academic year 2019-20. The maximum marks for IA is 30 and SE is 70. Each IA written examination is of 1 Hr .30 min duration for 20 marks. The tests will be conducted centrally. The average of two such IA is calculated for 20 marks. 5 marks will be allotted basing on Assignment and 5 marks are allotted for attendance. There is no minimum passing for IA and there is no provision for improvement in IA. Even though the candidate is absent for two IA exams/obtain zero marks the external marks are considered (if he/ she gets 40 out of 70) and the result shall be declared as 'PASS' from the Academic year 2019-20.
3. Discussed and recommended that no changes are required in Syllabi, Model Question Papers and Guidelines to be followed by the question paper setters in Mathematics for $5^{\text {th }}$ Semester and followed General Elective, Cluster Electives from the Academic year 2017-18 and followed same pattern for the Academic Year 2019-20.
4. Discussed and recommended for organizing certificate course online/offline, seminars, Guest lecturers, Online Examinations and Workshops to upgrade the knowledge of students for Competitive Examinations for the approval of the Academic Council.

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE VUYYURU-521165, KRISHNA Dt, A.P.
 (An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

MATHEMATICS	MAT-101	I B.Sc	w.e.f 2019-20
SEMESTER-I	PAPER-I	Max.Marks:100	
Hours/ Week: 6	DIFFERENTIAL EQUATIONS	No.of Credits: 5	

UNIT - I (12 Hours), Differential Equations of first order and first degree:
Linear Differential Equations; Differential Equations Reducible to Linear Form; Exact Differential Equations; Integrating Factors; Change of Variables.

UNIT - II (12 Hours): Orthogonal Trajectories, Differential Equations of first order but not of the first degree.

Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that do not contain. x (or y); Equations of the first degree in x and y - Clairaut's Equation.

UNIT - III (14 Hours), Higher order linear differential equations-I :

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.
General Solution of $f(D) y=0$
General Solution of $f(D) y=Q$ when Q is a function of x.
$\mathrm{f}(\mathrm{D})$ is Expressed as partial fractions.
P.I. of $f(D) y=Q$ when $Q=b^{*}$
P.I. of $f(D) y=Q$ when Q is $b \sin a x$ or $b \cos a x$.

UNIT - IV (12 Hours), Higher order linear differential equations-II :

Solution of the non-homogeneous linear differential equations with constant coefficients.
P.I. of $f(D) y=Q$ when $Q=b x^{k}$
P.I. of $f(D) y=Q$ when $Q=e^{*} V$
P.I. of $f(D) y=Q$ when $Q=x V$
P.I. of $f(D) y=Q$ when $Q=x^{m} V$

UNIT -V (10 Hours), Higher order linear differential equations-III :
Method of variation of parameters; Linear differential Equations with non-constant coefficients; The Cauchy-Euler Equation.

Reference Books :

1. Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Learning Pvt. Ltd. New Delhi-Second edition.
2. A text book of mathematics for BA/BSc Vol 1 by N. Krishna Murthy \& others, published by S. Chand \& Company, New Delhi.
3. Ordinary and Partial Differential Equations Raisinghania, published by S. Chand \& Company, New Delhi.
4. Differential Equations with applications and programs - S. Balachandra Rao \& HR Anuradhauniversities press.

Suggested Activities:

Seminar/ Quiz/ Assignments/ Project on Application of Differential Equations in Real life

AG \& SG SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS),
VUYYURU - 521 165, KRISHNA Dt., A.P.
(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam, A.P., India)
EXAMINATION AT THE END OF FIRST SEMISTER (w.e.f: 2016-17)
Paper Mat-101 C Max. Marks : 75 Pass Mark: 30 Time : 3 hrs.
SECTION - A (Short Answer Ouestions)
$5 \times 5=25 \mathrm{M}$
Answer any FIVE questions

1. Solve $(1+x y) x d y+(1-x y) y d x=0$
2. Solve $x \frac{d y}{d x}+y=y^{2} \log x$
3. Solve $y+p x=p^{2} x^{4}$
4. Solve $x^{2}(y-p x)=p^{2} y$
5. Solve $\left(D^{2}-5 D+6\right) y=e^{4 x}$
6. Solve $\left(D^{2}+4\right) y=\operatorname{Cos} 2 x$
7. Solve $\left(D^{2}-5 D+6\right) y=x e^{4 x}$
8. Solve $\left(D^{2}+1\right) y=\operatorname{Cosec} x$ by the method of Variation of Parameters.

SECTION-B

Answer any FIVE questions.
9. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
10. Solve $\frac{d x}{z^{2}-2 y z-y^{2}}=\frac{d y}{x y+x z}=\frac{d z}{x y-x z}$
11. Show that the family of confocal conics
 is self orthogonal
12. Solve $p^{2}+2 p y \cot x=y^{2}$
13. Solve $\mathrm{xp}^{3}=\mathrm{a}+\mathrm{bp}$
14. Solve $\left(D^{2}+9\right) y=\operatorname{Cos}^{3} x$
15. Solve $\left(D^{2}-2 D+1\right) y=x e^{x} \sin x$
16. Solve $\left(D^{2}+a^{2}\right) y=\tan a x$ by the method of Variation of Parameters

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE VUYYURU-521165

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

DEPARTMENT OF MATHEMATICS

Question Paper Guidelines for SEMESTER-END Examinations

Time: 3 Hrs MAT-101 Max.Marks:70 Min. Marks: 28
Note :- 1). Answer any FOUR questions out of 8 in Section-A. Each question carries 5
marks
(4x5=20 Marks)
2). Answer any FIVE questions out of 8 in Section-B. Each question carries 10 marks.

$$
\text { (} 5 \times 10=50 \text { Marks) }
$$

Questions to be set as follows:

	Unit-1	Unit-2	Unit-3	Unit-4	Unit-5
Section-A (Short answer questions)	2	2	2	1	1
Section-B (Essay questions)	1	1	2	2	2

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE, VUYYURU-521165, KRISHNA Dt, A.P.
 (An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

MATHEMATICS MAT-301 B.Sc.(E.M,T.M\& CS)w.e.f: 2019-2020

SEMESTER-III PAPER-III Max.Marks: 100

Hours per week: 6 Abstract Algebra and Real Analysis-I_No.of Credits:5

UNIT - 1 : (10Hrs) GROUPS : -

Binary Operation - Algebraic structure - semi group-monoid - Group definition and elementaryproperties Finite and Infinite groups - examples - order of a group. Composition tables with examples.

UNIT - 2 : (10Hrs) SUBGROUPS : -
Complex Definition - Multiplication of two complexes Inverse of a complex-Subgroup definition- examples-criterion for a complex to be subgroups.Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups.
Co-sets and Lagrange's Theorem: -Cosets Definition - properties of Cosets-Index of a subgroups of a finite groups-Lagrange'sTheorem.

UNIT -3 : (12Hrs) NORMAL SUBGROUPS : -

Definition of normal subgroup - proper and improper normal subgroup-Hamilton group criterion for a subgroup to be a normal subgroup - intersection of two normal subgroups Subgroup of index 2 is a normal sub group - simple group - quotient group - criteria for the existenceof a quotient group.

UNIT - 4 (14hrs) : REAL NUMBERS :

The algebraic and order properties of R, Absolute value and Real line, Completeness property of R, Applications of supreme property; intervals. No. Question is to be set from this portion.
Real Sequences: Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. The Cauchy's criterion, properly divergent sequences, Monotone sequences, Necessary and Sufficient condition for Convergence of Monotone Sequence, Limit Point of Sequence, Subsequences and the Bolzano-weierstrass theorem Cauchy Sequences - Cauchey's general principle of convergence theorem.

UNIT -5 (14hrs) : INFINITIE SERIES :

Series: Introduction to series, convergence of series. Cauchey's general principle of convergence for series tests for convergence of series, Series of Non-Negative Terms.

1. P-test, 2. Cauchey's n'root test or Root Test. 3. D'-Alemberts' Test or Ratio Test.
2. Alternating Series - Leibnitz Test. Absolute convergence and conditional convergence.

Reference Books:

1. Abstract Algebra, by J.B. Fraleigh, Published by Narosa Publishing house.
2. Real Analysis by Rabert\&Bartely and .D.R. Sherbart, Published by John Wiley.
3.A text book of Mathematics for B.A. / B.Sc. by B.V.S.S. SARMA and others, Published byS.Chand\& Company, New Delhi.
4.Modern Algebra by M.L. Khanna.

Suggested Activities:

Seminar/ Quiz/ Assignments/Group discussions.

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS), VUYYURU - 521165, KRISHNA Dt., A.P.

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)
EXAMINATION AT THE END OF THE THIRD SEMESTER (w.e.f 2019-20)
Mathematics Paper III MAT- 301 Max. Marks: 70Pass Mark: 28 Time: 3 hrs.
Abstract Algebra and Real Analysis
Section - A (short answer questions)
Answer any Four of the following questions.
$4 \times 5=20 M$
Choosing at least ONE question from each Part.

Part - I

1. Show that in a group G for $a, b \in G,(a b)^{2}=a^{2} b^{2} \Leftrightarrow G$ is abelian.
2. If H, K is two sub groups of a group G , then show that $\mathrm{H} \cap \mathrm{K}$ is also a sub group of G .
3. State and prove Lagrange's Theorem.
4. A subgroup H of a group G is normal subgroup iff $\mathrm{xH}^{-1}=\mathrm{H}$, for all $\mathrm{x} \in \mathrm{G}$.

Part - II

5. Every convergent sequence is bounded? Is the converse true?
6. Show that the sequence $S_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots \ldots \ldots .+\frac{1}{n+n}$ is convergent.
7. Test for convergence of $\sum \sqrt{n+1}-\sqrt{n}$
8. Examine the conditionally convergence of $\sum(-1)^{n+1} \frac{n}{n^{2}+1}$

Section - B (long answer questions)

Answer any FIVE of the following questions. $\quad \mathbf{5 x 1 0}=\mathbf{5 0 M}$

Choosing at least TWO questions from each Part.

Part - I

9. Show that the set of Q^{+}of all + ve rational numbers forms an abelian group under the composition defined by ' o ' such that $\mathrm{aob}=\frac{a b}{3}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+}$.
10. If H is a non-empty complex of a group G . The necessary and sufficient condition for H to be a sub group of G is $a, b \in H \Rightarrow a b^{-1} \in H$ here b^{-1} is the inverse of b.
11. If H_{1}, H_{2} are two subgroups of a group G, then $H_{1} \mathrm{UH}_{2}$ is a sub group of G if and only if $\mathrm{H}_{1} \subseteq \mathrm{H}_{2}$ (or) $\mathrm{H}_{1} \subseteq \mathrm{H}_{2}$.
12. A subgroup H of a group G is normal subgroup of G iff the product of two right (left) cosets of H in G is again a right (left)coset of H in G .

Part - II

13. A sequences is convergent if and only if it is a Cauchy's sequence
14. State and prove Cauchy's First theorem on sequence.
15. Test for convergence of $\sum \frac{1.3 .5 \ldots \ldots \ldots \ldots(2 n-1)}{2.4 .6 \ldots \ldots \ldots . .2 n} x^{n-1}(x>0)$
16. State and prove Leibnitz's test.

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS), VUYYURU-521165

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

DEPARTMENT OF MATHEMATICS

Question Paper Guidelines for SEMESTER-END Examinations

Time: 3 Hrs. MAT-301 Max.Marks:70 Min. Marks: 28

Note :- 1). Answer any FOUR questions out of 8 in Section-A. Each question Carries 5 marks.
(4x5=20 Marks)
2). Answer any FIVE questions out of 8 in Section-B. Each question Carries 10 marks.

$$
(5 \times 10=50 \text { Marks })
$$

Questions to be set as follows:

	Unit-1	Unit-2	Unit-3	Unit-4	Unit-5
Section-A (Short answer questions)	1	2	1	2	2
Section-B (Essay questions)	1	2	1	2	2

A.G \&S.G SIDDHARTHA DEGREE COLLEGE, VUYYURU-521165

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

MATHEMATICS	MAT-501	III B.Sc	w.e.f 2019-20
SEMESTER-V	PAPER-V	Max.Marks:70	
Hours/ Week: 5		No. of Credits: 5	

VECTOR CALCULUS \&RING THEORY

UNIT - 1: VECTOR DIFFERENTIATION: -

Vector Differentiation, Ordinary derivatives of vectors, Differentiability, Gradient, divergence, Curl operators, Formulae Involving these operators.

UNIT - 2: VECTOR INTEGRATION: -
Line Integral, Surface Integral and Volume integral with examples.
UNIT - 3: VECTOR INTEGRATION APPLICATIONS: -
Theorems of Gauss and Stokes, Green's theorem in plane and applications of these theorems.

UNIT - 4: RINGS-I: -

Definition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings, Ideals

UNIT - 5: RINGS-II: -
Definition of Homomorphism - Homorphic Image - Elementary Properties of Homomorphism Kernel of a Homomorphism - Fundamental theorem of Homomorphism

Maximal Ideals - Prime Ideals.

Reference Books:-

1. Abstract Algebra by J. Fralieh, Published by Narosa Publishing house.
2. Vector Calculus by SanthiNarayana, Published by S. Chand \& Company Pvt. Ltd., New Delhi.
3. A text Book of B.Sc., Mathematics by B.V.S.S.Sarma and others, published by S. Chand \& Company Pvt. Ltd., New Delhi.
4. Vector Calculus by R. Gupta, Published by Laxmi Publications.
5. Vector Calculus by P.C. Matthews, Published by Springer Verlagpublicattions.
6. Rings and Linear Algebra by Pundir\&Pundir, Published by PragathiPrakashan.

Suggested Activities:

Seminar/ Quiz/ Assignments/ Project on Ring theory and its applications

A.G \& S.G SIDDHARTHA DEGREE COLLEGE: VUYYURU

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

DEPARTMENT OF MATHEMATICS

Question Paper Guidelines for SEMESTER-END Examinations

Time: 3 Hrs MAT- 501 Max.Marks:70Min. Mark: 28
Note :-1) Answer any FOUR questions out of 8 in Section-A. Each question Carries 5 marks.
(4x5=20 Marks)
2) Answer any FIVE questions out of 8 in Section-B. Each question Carries 10 marks.

$$
(5 \times 10=50 \text { Marks })
$$

Questions to be set as follows:

Blue Print for Question Paper pattern.

	Unit-1	Unit-2	Unit-3	Unit-4	Unit-5
Section-A (Short Answer Questions)	2	2	1	2	1
Section-B (Essay Questions)	2	1	2	2	1

-The End -
A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE, VUYYURU - 521165, KRISHNA Dt., A.P.
(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)
EXAMINATION AT THE END OF FIFTH SEMESTER (w.e.f 2019-20)
MATHEMATICS \quad Paper V \quad MAT- 501 \quad MAX.MARKS: 70 \quad TIME: 3 hrs

(VECTOR CALCULUS AND RING THEORY)

$\underline{\text { Section - A (short answer questions) }}$

Answer any Four of the following questions.
$4 \times 5=20 M$
Choosing at least $\underline{\text { ONE }}$ question from each Part.

Part - I

1) If $\mathrm{r}=\operatorname{acos} t i+a \operatorname{sint} j+a t \tan \theta k$ find $\left|\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}\right|$ and $\left[\frac{d r}{d t} \frac{d^{2} r}{d t^{2}} \frac{d^{3} r}{d t^{3}}\right]$
2) Find div f and curl f where $f=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
3) If $F=3 x y i-y^{2} j$ evaluate $\oint_{c} F \cdot d r$ where ' c ' is the curve $\mathrm{y}=2 \mathrm{x}^{2}$ in the xy plane from $(0,0)$ to $(1,2)$.
4) If $F=2 x z i-x j+y^{2} k$ evaluate the $\int_{v} F \cdot d v$ where v is the region bounded by the surface $x=0, x=2, y=0, y=6, z=x^{2}, z=4$.

Part - II

5) State and prove Green's theorem in a plane.
6) Prove that $\mathrm{Z}_{\mathrm{m}}=\{0,1,2,3, \ldots \ldots \ldots \ldots . \mathrm{m}-1\}$ is a ring with respect to addition and multiplication modulo ' m '
7) Prove that a field has no Zero divisors.
8) If f is homomorphism of a ring R into a ring R^{1} then kerf is an ideal of R

Section - B (long answer questions)

Answer any FIVE of the following questions. $\quad \mathbf{5 x 1 0}=\mathbf{5 0 M}$
Choosing at least TWO questions from each Part.

Part - I

9) Prove thatgrad $(A \cdot B)=(B \cdot \nabla) A+(A \cdot \nabla) B+B \times \operatorname{curl} A+A \times \operatorname{curl} B$.
10) Evaluate $\int_{s} F \cdot N d s$ where $F=z i+x j-3 y^{2} z k$ and s is the surface $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
11) State and prove Gauss divergence Theorem.
12) Verify Green's Theorem in the plane for $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.

Part - II

13) Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $\mathrm{P}(1,2,3)$ in the direction of the line PQ where $\mathrm{Q}=(5,0,4)$.
14) Define Field. Prove that every field is an integral domain.
15) Prove that $\mathrm{Q}(\sqrt{2})=\{\mathrm{a}+\mathrm{b} \sqrt{2} / \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ is a ring with respect to ordinary addition and multiplication.
16) State and prove fundamental theorem of ring homomorphism.

A.G \& S.G SIDDHARTHA DEGREE COLLEGE: VUYYURU-521165

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

MATHEMATICS	MAT-502	III B.Sc	w.e.f 2019-20
SEMESTER-V		PAPER-VI	Max.Marks:70
Hours/ Week: 5	LINEAR ALGEBRA	No. of Credits: 5	
UNIT -I Matrix:		$(12 \mathrm{hrs})$	

Matrices, Elementary Properties of Matrices, Triangular form, Echelon form, Normal form Inverse Matrices, Non - Singular form, Rank of Matrix, Linear Equations, Characteristic Roots, Characteristic Vectors of square Matrix, Cayley - Hamilton Theorem.

UNIT - II Vector Spaces-I:

(12 hrs)
Vector Spaces, General properties of vector spaces, n-dimensional Vectors, addition and scalar multiplication of Vectors, internal and external composition, Null space, Vector subspaces, Algebra of subspaces, Linear Sum of two subspaces, linear combination of Vectors, Linear span Linear independence and Linear dependence of Vectors.

UNIT -III Vector Spaces-II:

(12 hrs)
Basis of Vector space, Finite dimensional Vector spaces, basis extension, co-ordinates, Dimension of a Vector space, Dimension of a subspace, Quotient space and Dimension of Quotient space.

UNIT -IV Linear Transformations:

Linear transformations, linear operators, Properties of L.T, sum and product of LTs, Algebra of Linear Operators, Range and null space of linear transformation, Rank and Nullity of linear transformations - Rank - Nullity Theorem.

UNIT -V Inner product space:

Inner product spaces, Euclidean and unitary spaces, Norm or length of a Vector, Schwartz inequality, Triangle in Inequality, Parallelogram law, Orthogonality, Orthonormal set, complete orthonormal set, Gram - Schmidt orthogonalisation process. Bessel's inequality and Parseval's Identity.

Reference Books:

1. Linear Algebra by J.N. Sharma and A.R. Vasista, published by Krishna Prakashan Mandir, Meerut- 250002.
2. Matrices by Shanti Narayana, published by S.Chand Publications.
3. Linear Algebra by Kenneth Hoffman and Ray Kunze, published by Pearson Education (low priced edition), New Delhi.
4. Linear Algebra by Stephen H. Friedberg et al published by Prentice Hall of India Pvt. Ltd. 4th Edition 2007.

Suggested Activities:

Seminar/ Quiz/ Assignments/ Project on "Applications of Linear algebra Through Computer Sciences"

A.G \& S.G SIDDHARTHA DEGREE COLLEGE: VUYYURU

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

DEPARTMENT OF MATHEMATICS

Question Paper Guidelines for SEMESTER-END Examinations

Time: 3 Hrs MAT-502 Max.Marks:70 Min. Mark: 28

Note :-1) Answer any FOUR questions out of 8 in Section-A. Each question Carries 5 marks.
(4x5=20 Marks)
2) Answer any FIVE questions out of 8 in Section-B. Each question Carries 10 marks.

$$
\text { (} 5 \times 10=50 \text { Marks) }
$$

Questions to be set as follows:

Blue Print for Question Paper pattern.

	Unit-1	Unit-2	Unit-3	Unit-4	Unit-5
Section-A (Short Answer Questions)	2	1	1	2	2
Section-B (Essay Questions)	2	1	1	2	2

-The End -

A.G \& S.G SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE, VUYYURU - 521165, KRISHNA Dt., A.P.

(An Autonomous College in the jurisdiction of Krishna University, Machilipatnam)

EXAMINATION AT THE END OF FIFTH SEMESTER (w.e.f 2019-20)

MATHEMATICS Paper VI MAT-502 MAX.MARKS: 70 TIME: 3 hrs

LINEAR ALGEBRA

Section - A (short answer questions)

Answer any Four of the following questions.

Choosing at least ONE question from each Part.

Part - I

1) Show that the rank of the transpose of a matrix is equal to the rank of the original matrix. i.e., $\rho(A)=\rho\left(A^{T}\right)$.
2) Find the rank of the matrix $\left[\begin{array}{rrrr}1 & -2 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2\end{array}\right]$ by reducing it in the Normal form
3) If S is a subset of a vector space $\mathrm{V}(\mathrm{F})$, then prove that S is a subspace of $\mathrm{V} \Leftrightarrow L(S)=S$
4) Let w 1 and w 2 be two subspaces of R^{4} given by $\mathrm{w}_{1}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) ; \mathrm{b}-2 \mathrm{c}+\mathrm{d}=0\}$,
$\mathrm{w}_{2}=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) ; \mathrm{a}=\mathrm{d}, \mathrm{b}=2 \mathrm{c}\}$.Find the basis and dimension (i) w_{1} (ii) w_{2} (iii) $w 1 \cap w 2$
and hence find the $\operatorname{dim}(w 1+w 2)$

Part - II

5) Let $\mathrm{T}: R^{2} \rightarrow R^{2}$ be a linear transformation defined by $\mathrm{T}(1,0)=(1,1), \mathrm{T}(0,1)=(-1,2)$ then
find a linear transformation T
6) The mapping $T: V_{3}(R) \rightarrow V_{2}(R)$ is defined by $T(x, y, z)=(x-y, x-z)$ is a linear transformation.
7) State and prove Cauchy - Schwarz's inequality
8) State and prove Triangle inequality

Section - B (long answer questions)

Answer any FIVE of the following questions. $\quad \mathbf{5 x 1 0}=\mathbf{5 0 M}$

Choosing at least TWO questions from each Part.

Part - I

9) State and prove Cayley - Hamilton theorem in Matrices.
10) Find the characteristic roots and the corresponding characteristic vectors of the matrix
$A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$
11) Let $\mathrm{V}(\mathrm{F})$ be a vector space. A non-empty set $\mathrm{W} \subseteq \mathrm{V}$. The necessary and sufficient condition for W to be a subspace of V is $\mathrm{a}, \mathrm{b} \in \mathrm{F}$ and $\alpha, \beta \in V \Rightarrow a \alpha+b \beta \in W$
12) Let W be a subspace of a finite dimensional vector space $V(F)$ then $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

Part - II

13) Find the linear Transformation $T(x, y, z)$ where $T: R^{3} \rightarrow R$ isdefined by

$$
\mathrm{T}(1,1,1)=3, \mathrm{~T}(0,1,-2)=1 \text { and } \mathrm{T}(0,0,1)=-2 .
$$

14) State and prove Rank-nullity theorem
15) State and prove Bessel's inequality
16) If $(1,0,1,1)(-1,0,-1,1)(0,-1,1,1)$ forms a basis of a subspace of $R^{4}(R)$ use GramSchmidt process to obtain an orthonormal basis.
